-
Saito et al., 2009, Nature 461(7268): 1296--1299
A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila.
-
Olivieri et al., 2010, EMBO J. 29(19): 3301--3317
An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila.
-
Saito et al., 2010, Genes Dev. 24(22): 2493--2498
Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila.
-
Moshkovich and Lei, 2010, PLoS Genet. 6(3): e1000880
HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila.
-
Handler et al., 2011, EMBO J. 30(19): 3977--3993
A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors.
-
Olivieri et al., 2012, Mol. Cell 47(6): 954--969
The Cochaperone Shutdown Defines a Group of Biogenesis Factors Essential for All piRNA Populations in Drosophila.
-
Dönertas et al., 2013, Genes Dev. 27(15): 1693--1705
Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex.
-
Ohtani et al., 2013, Genes Dev. 27(15): 1656--1661
DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary.
-
Handler et al., 2013, Mol. Cell 50(5): 762--777
The Genetic Makeup of the Drosophila piRNA Pathway.
-
Saito, 2014, Methods Mol. Biol. 1093: 25--33
RNAi and Overexpression of Genes in Ovarian Somatic Cells.
-
Sytnikova et al., 2014, Genome Res. 24(12): 1977--1990
Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures.
-
Wen et al., 2014, Genome Res. 24(7): 1236--1250
Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines.
-
Zabidi et al., 2015, Nature 518(7540): 556--559
Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.
-
Stampfel et al., 2015, Nature 528(7580): 147--151
Transcriptional regulators form diverse groups with context-dependent regulatory functions.
-
Sienski et al., 2015, Genes Dev. 29(21): 2258--2271
Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery.
-
Sato et al., 2015, Mol. Cell 59(4): 553--563
Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline.
-
Homolka et al., 2015, Cell Rep. 12(3): 418--428
PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Biogenesis.
-
Sumiyoshi et al., 2016, Genes Dev. 30(14): 1617--1622
Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells.
-
Mertsalov et al., 2016, Biochem. J. 473(13): 1905--1916
Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.
-
Iwasaki et al., 2016, Mol. Cell 63(3): 408--419
Piwi Modulates Chromatin Accessibility by Regulating Multiple Factors Including Histone H1 to Repress Transposons.
-
Bairoch, 2016, The Cellosaurus: a cell line knowledge resource.
The Cellosaurus: a cell line knowledge resource.
-
Vrettos et al., 2017, RNA 23(1): 108--118
Kc167, a widely used Drosophila cell line, contains an active primary piRNA pathway.
-
Pandey et al., 2017, PLoS Genet. 13(8): e1006956
Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries.
-
Ishizu et al., 2017, Methods 126: 186--192
Use of the CRISPR-Cas9 system for genome editing in cultured Drosophila ovarian somatic cells.
-
Ilyin et al., 2017, Nucleic Acids Res. 45(13): 7666--7680
Piwi interacts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells.
-
Yashiro et al., 2018, Cell Rep. 23(12): 3647--3657
Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells.
-
Batki et al., 2019, Nat. Struct. Mol. Biol. 26(8): 720--731
The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation.
-
Haberle et al., 2019, Nature 570(7759): 122--126
Transcriptional cofactors display specificity for distinct types of core promoters.
-
Mikhaleva et al., 2019, Chromosome Res. 27(1-2): 141--152
The nucleolar transcriptome regulates Piwi shuttling between the nucleolus and the nucleoplasm.
-
Osumi et al., 2019, EMBO Rep. 20(12): e48296
Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing.
-
Hirakata et al., 2019, EMBO Rep. 20(7): e47708
Requirements for multivalent Yb body assembly in transposon silencing in Drosophila.
-
Munafò et al., 2019, Genes Dev. 33(13-14): 844--856
Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery.
-
Ishizu et al., 2019, Cell Rep. 27(6): 1822--1835.e8
Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis.
-
Zhao et al., 2019, Nat. Cell Biol. 21(10): 1261--1272
A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation.
-
Mazina et al., 2019, Dokl. Biochem. Biophys. 485(1): 138--140
The Development of Reporter System for the Investigation of Molecular Mechanisms of Ecdysone Response.
-
Murano et al., 2019, EMBO J. 38(17): e102870
Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing.
-
Fabry et al., 2019, eLife 8: e47999
piRNA-guided co-transcriptional silencing coopts nuclear export factors.
-
Mugat et al., 2020, Nat. Commun. 11(1): 2818
The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation.
-
Yamaguchi et al., 2020, Nat. Commun. 11(1): 858
Crystal structure of Drosophila Piwi.
-
Onishi et al., 2020, Sci. Adv. 6(50): eaaz7420
Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells.
-
Eastwood et al., 2021, eLife 10: e65557
Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila.
-
Munafò et al., 2021, eLife 10: e66321
Channel nuclear pore complex subunits are required for transposon silencing in Drosophila.
-
Schnabl et al., 2021, Genes Dev. 35(5-6): 392--409
Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex.
-
Iwasaki et al., 2021, EMBO J. 40(18): e108345
Piwi-piRNA complexes induce stepwise changes in nuclear architecture at target loci.
-
Han et al., 2021, Genetics 219(2): iyab113
Transposable element profiles reveal cell line identity and loss of heterozygosity in Drosophila cell culture.
-
Fefelova et al., 2022, Nucleic Acids Res. 50(2): 867--884
-
Andreev et al., 2022, Nat. Struct. Mol. Biol. 29(2): 130--142
-
Meng et al., 2022, Nucleic Acids Res. 50(15): e90
-
Stoyko et al., 2022, Curr Protoc 2(12): e624
-
Baumgartner et al., 2022, eLife 11: e80067